Showing posts with label sensors. Show all posts
Showing posts with label sensors. Show all posts

Monday, December 4, 2017

Should I Buy Another Chevy?

Likely, at least in part, due to the 1973-74 oil embargo (I turned 16 in 1973) followed shortly by the second oil crisis in 1979 (the year I graduated from college) I’ve always had a passion for small economical cars.  My first new car purchase in 1980 was a Chevy Chevette (remember those?) that I babied and coddled – always Mobile 1 synthetic, washed, waxed…….. until the motor blew up in 1982 on Route 128 in Massachusetts one morning during rush hour……. I can still picture the motor parts in the rear view mirror...... I had the motor replaced (Chevy was great about that) but I continued to have problems – the car was so poorly designed and built it was literally falling apart. Swearing off American cars for life it was Japanese autos after that – a couple of Datsun (now Nissan) vehicles, a Honda and then a couple of Toyota products.

Well, these days nothing lasts forever and I’ve actually been looking at couple of Chevy electrics – the Volt and the Bolt. I’m especially impressed with the Bolt, the car General Motors has been using the past few years as its primary autonomous-driving testbed. Last week GM unveiled the latest version of the Bolt, with an EPA-rated 238-mile range and a base price of $37,495. 

Looking at older autonomous model Bolts - the lidar units were mounted on roof mounted rods and the car had sensors stuffed into drilled and cut holes in the body. The new autonomous Bolt has sensors hidden in the bumpers and fenders and the lidar unit is hidden in the roof rack. The new model appears to be a huge step up.

How did GM move so fast? The company acquired San Francisco startup Cruise Automation last year for $581 million. Cruise Automation was started by Kyle Vogt and he came along with the acquisition to head up GM’s automation efforts. Vogt has an interesting background, having  cofounded Twitch, a streaming service used by video gamers to watch others play video gamesAmazon bought Twitch in 2014 for $1.1 billion and Vogt was on to his next big idea, originally thinking his new company would develop portable driverless software that could be attached to almost any vehicle. First experimenting with Audis and Nissan Leafs, he realized it would be much easier to build the technology directly into a car’s onboard controls and the Bolt was the only car suitable to do that.

Cruise Automation headquarters remains in San Francisco and, with GM backing, Vogt has grown the company from 40 software and mechanical engineers to over 400. He’s also bought lidar maker Strobe, claiming this will cut spending on laser gear 99 percent.

GM has big plans for the Bolt, intending to use them as the backbone of a robo-taxi business it plans to start in 2019.

Tuesday, June 9, 2015

An Experience With An Intelligent Car

Yesterday I attended an excellent advisory board meeting for a National Science Foundation funded eBook project called E-MATE at Brookdale Community College in Lincroft, NJ. Mike and Kelly are doing some really cutting edge ground-breaking work in the development of electronic instructional materials and it was an excellent meeting. I need to do some writing here about the work they are doing. Today though – I want to write about cars.

Diane was away and I had the chance to drive her car (a 2014 Volvo XC70) back and forth to the meeting. We leased this car in December 2013 and she’s the primary driver.  Yesterday was my first opportunity to take this car solo (solo is the key word here) on a road trip of almost 500 miles. The car is loaded with just about every option including the technology package and I’ve been chomping at the bit to really give the technologies a test, especially after seeing one of the autonomous Google self-driving cars in downtown Mountain View a few weeks ago.

Volvo does not offer a self-driving package (yet) but my experience - it is pretty darn close to self-driving with the technology package that adds adaptive cruise control, automatic high beam control, frontal collision warning, automatic braking for frontal collision crash mitigation, a driver inattention monitor, blind-spot warning system, active xenon headlights, and lane-departure warning to an already incredibly safe and comfortable car.

Now - driving from Massachusetts to New Jersey on a weekday is always an experience – New York City cannot be avoided unless you want to add hours to the trip and that means bumper-to-bumper traffic, crazy drivers and lots of intense time behind the wheel.

I was so impressed with the car – stop and go for at least a couple of hours and no need to hit the brakes or the accelerator. It took some time to get used to – I had to “trust” the car but once I did – amazing! An alarm that goes off if the car starts to drift outside the lane (unless a directional has been used). Sensors that monitor and determine whether the driver is becoming tired and inattentive. Cameras that watch for speed limit signs and indicate when the speed limit has changed. A blind spot warning system that indicates a car is coming up from behind on either side. Sensors that monitor oncoming traffic and control high beams.

Does the car drive itself – no – not yet but it is pretty close. Did I push the technology? I don't think so. I let the car do what it is designed to do. What did I do? I pretty much steered and adjusted the cruise control up and down. I did not have to use the accelerator or brakes unless I wanted to on the highway, whether I was going 70 mph or in a stop and go traffic jam.

As an FYI Volvo in 2017 will start testing 100 "production-viable" autonomous self-driving cars in Sweden with real drivers like you and me. These test cars have 28 cameras, lasers, sensors, and radar units along with integrated computers and communications systems that make up the self-driving system.  How soon will we have the chance to purchase a self-driving car? Right now it is looking like 2020.

With my new position at the Center for Optics and Photonics Education and my past position at the Information and Communications Technologies Center, cars (and a lot of other devices) are really hitting a sweet tech spot for me. Infrared lasers, optical sensors, integrated GPS, radar and cameras collecting large amounts of data, onboard computers processing the data, communicating back to the car and driver and making intelligent "pretty-big-data" decisions. Super cool stuff and I’ll be writing over the summer about some of these individual technologies and how they work.

Now for me – it is back to my older Toyota product with none of the car sensor and intelligent technologies (it does have a back-up camera and Bluetooth). I have to remember when I’m driving my car all of the “intelligence” is up to the driver. Ohhhh Noooo :)