Showing posts with label hardware. Show all posts
Showing posts with label hardware. Show all posts

Thursday, June 10, 2021

Pspice Lab Series Video 3: Moving The Reference Ground Around

Zero volts reference, also known as ground is always a confusing topic. What if ground is placed at different locations in a circuit? In this 11 minute and 42 second video I use PSpice to show what happens when you move a ground around in a series circuit.

Want to learn more? I’ll be teaching a Systems 1 course online in the fall and a Systems 2 course in the spring at Holyoke Community College. If you are anywhere in the world and interested in taking an online course with me drop an email to gsnyder@hcc.edu Both courses will transfer to most university electrical engineering programs in the United States. Hope to see you there!!

Wednesday, June 2, 2021

Pspice Lab Series Video 2: Simple Series Resistive Circuits

 Here's a second PSPice video covering analysis of a simple series circuit with two dc voltage sources and four resistors.

Want to learn more? I’ll be teaching a Systems 1 course online in the fall and a Systems 2 course in the spring at Holyoke Community College. If you are anywhere in the world and interested in taking an online course with me drop an email to gsnyder@hcc.edu Both courses will transfer to most university electrical engineering programs in the United States. Hope to see you there!!

Sunday, May 23, 2021

PSpice Lab Series Video 1

Over the summer I’ll be working on a series of OrCAD PSpice videos. PSpice is one of the most common analog and mixed signal circuit simulator and verification tools used by electrical engineers to rapidly move through the design cycle, from circuit exploration to design development and verification. It is also a lot of fun to play around with!

I’m developing a series of 25-30 online experiments that we’ll be using in my EGR223 - System Analysis (Circuit Analysis 1) and EGR 224 - System Analysis (Circuit Analysis 2) courses at Holyoke Community College. Here’s the first video in the series.




OrCAD has an excellent academic program that provides students and educators with a complete suite of design and analysis tools to learn, teach, and create electronic hardware. If you are a student or educator you can download the software here for free and follow along with my labs. If you are not a student or educator (or perhaps considering) you can download and install a trial version of the software here.


I’ll be teaching the Systems 1 course online in the fall and the Systems 2 course at Holyoke Community College in the spring so if you are anywhere in the world and interested in taking a course with me drop an email to gsnyder@hcc.edu Both courses will transfer to most university electrical engineering programs in the United States. Hope to see you there!!

Monday, December 4, 2017

Should I Buy Another Chevy?

Likely, at least in part, due to the 1973-74 oil embargo (I turned 16 in 1973) followed shortly by the second oil crisis in 1979 (the year I graduated from college) I’ve always had a passion for small economical cars.  My first new car purchase in 1980 was a Chevy Chevette (remember those?) that I babied and coddled – always Mobile 1 synthetic, washed, waxed…….. until the motor blew up in 1982 on Route 128 in Massachusetts one morning during rush hour……. I can still picture the motor parts in the rear view mirror...... I had the motor replaced (Chevy was great about that) but I continued to have problems – the car was so poorly designed and built it was literally falling apart. Swearing off American cars for life it was Japanese autos after that – a couple of Datsun (now Nissan) vehicles, a Honda and then a couple of Toyota products.

Well, these days nothing lasts forever and I’ve actually been looking at couple of Chevy electrics – the Volt and the Bolt. I’m especially impressed with the Bolt, the car General Motors has been using the past few years as its primary autonomous-driving testbed. Last week GM unveiled the latest version of the Bolt, with an EPA-rated 238-mile range and a base price of $37,495. 

Looking at older autonomous model Bolts - the lidar units were mounted on roof mounted rods and the car had sensors stuffed into drilled and cut holes in the body. The new autonomous Bolt has sensors hidden in the bumpers and fenders and the lidar unit is hidden in the roof rack. The new model appears to be a huge step up.

How did GM move so fast? The company acquired San Francisco startup Cruise Automation last year for $581 million. Cruise Automation was started by Kyle Vogt and he came along with the acquisition to head up GM’s automation efforts. Vogt has an interesting background, having  cofounded Twitch, a streaming service used by video gamers to watch others play video gamesAmazon bought Twitch in 2014 for $1.1 billion and Vogt was on to his next big idea, originally thinking his new company would develop portable driverless software that could be attached to almost any vehicle. First experimenting with Audis and Nissan Leafs, he realized it would be much easier to build the technology directly into a car’s onboard controls and the Bolt was the only car suitable to do that.

Cruise Automation headquarters remains in San Francisco and, with GM backing, Vogt has grown the company from 40 software and mechanical engineers to over 400. He’s also bought lidar maker Strobe, claiming this will cut spending on laser gear 99 percent.

GM has big plans for the Bolt, intending to use them as the backbone of a robo-taxi business it plans to start in 2019.