Wednesday, December 4, 2024

Quantum Communications - Part 3: Photon Polarization and Superposition

 Building on Part 2’s discussion of polarization, let's look a little deeper at how light enables quantum communication. Superposition in quantum mechanics means a photon can exist in multiple polarization states at once, unlike classical objects that must be in one definite state. Looking at the diagram below, a photon isn't limited to being just vertical (1) or horizontal (0), but can exist in a mixture of both until measured. Think of it like a spinning coin - while spinning, it's neither heads nor tails but both possibilities at once. When we measure the photon's polarization (like catching the coin), it "collapses" into one definite state.

The diagram shows two measurement bases - rectilinear and diagonal. A photon in superposition measured in either base has a probability of being found in either state of that base. This property is crucial for quantum cryptography because any measurement by an eavesdropper forces the superposition to collapse, altering the photon's state and revealing the intrusion.

 

The 45° polarization state, shown in the diagonal base of our diagram, demonstrates one of the most fascinating aspects of quantum mechanics. While we might classically think of 45° as simply an angle halfway between horizontal and vertical, in quantum mechanics it represents something far more profound. When a photon is polarized at 45°, it literally exists in a perfect blend of horizontal and vertical states at the same time - not just leaning one way or the other, but fully in both states simultaneously.

 

This quantum behavior becomes clear when we measure these 45° polarized photons. If we measure using the rectilinear base (horizontal/vertical as shown in the left circle of our diagram), we get the following result: the photon will randomly show up as either horizontal or vertical with exactly equal probability. This isn't because we're measuring imprecisely or because the photon was "kind of" in both states - it was genuinely, mathematically, and physically in both states at once until the act of measurement forced it to pick one.

 

Think of it this way: if we send many 45° polarized photons through a horizontal polarizer, exactly half will pass through (registering as horizontal) and half will be blocked (registering as vertical). This isn't due to some classical "angled" behavior - it's a direct manifestation of quantum superposition, where the photon existed in both states simultaneously until we forced it to "decide" by measuring it.

 

This property is part of what makes quantum communication so secure: any attempt to measure these superposition states unavoidably disturbs them, making eavesdropping detectable.

Tuesday, November 26, 2024

Quantum Communications - Part 2: Polarization

In Part 1 of this series I discussed how quantum superposition allows particles to exist in multiple states at once until measured. This makes quantum information almost impossible to copy secretly, enabling ultra-secure communication systems that can detect eavesdropping attempts. Here we'll take a closer look at how this information is transmitted using light particles called photons. 


Light can be analyzed as either a ray or a wave, each model revealing different aspects of its behavior. The ray model treats light as straight lines traveling through space, useful for understanding reflection, refraction, and how lenses and mirrors work. The wave model shows light as oscillating electromagnetic waves, explaining phenomena like interference, diffraction, and polarization. While the ray model helps us design simple optical devices like eyeglasses, the wave model is necessary for understanding more complex effects like how polarizing filters work. Both models remain important in modern optics, with each being used depending on which aspects of light's behavior are most relevant to the situation at hand.

 

When it comes to polarization we need to think about light as a wave. Light waves oscillate perpendicular to their direction of travel, Unpolarized light ( like we get from natural sources like the sun or artificial sources like light bulbs) vibrates in all possible directions like a rope being waved up-down, side-to-side, and at every angle in between. A polarization filter works like a microscopic venetian blind with extremely fine parallel slits. When light encounters the filter, only the waves that vibrate parallel to these slits can pass through completely. Waves vibrating in other directions are either blocked entirely or have only their parallel components transmitted. The light that emerges from the filter is polarized, meaning all the waves are vibrating in the same direction. 


Here's a quick 3 second video I made demonstrating light passing through a polarizing filter.


Before the filter: 
  • Horizontal component (blue wave)
  • Vertical component (pink wave)
  • 45-degree component (green wave, thicker line) All components are present in the unpolarized light
The Filter: 
  • Oriented at 45 degrees
  • Only allows waves aligned with its transmission axis
After the filter: 
  • Only the 45-degree component (green wave) passes through
  • Horizontal and vertical components are blocked
  • The transmitted light is polarized along the 45-degree axis

Notice:

  • Only transmits light waves that oscillate parallel to its transmission axis (45 degrees in this case)
  • Waves at other angles are either blocked or have only their 45-degree component transmitted
  • The result is polarized light oscillating only at 45 degrees
This selective transmission property makes polarizing filters particularly useful in everyday applications. For example, polarizing sunglasses can effectively reduce glare because light reflecting off horizontal surfaces like water or roads tends to become partially polarized in the horizontal direction. The sunglasses, which have vertical polarizing slits, block this horizontal glare while still allowing other light through. A demonstration of how polarization works involves using two polarizing filters. When light passes through the first filter, it becomes polarized in one direction. If you then rotate a second filter 90 degrees relative to the first, no light gets through at all because the polarized light from the first filter is now perpendicular to the slits in the second filter.

 

So what does polarization have to do with quantum communications? In quantum communications individual photons can be prepared in specific polarization states (vertical, horizontal, or diagonal) to represent quantum bits. Due to quantum mechanics principles, any attempt to measure these polarization states disturbs them, making secure communication possible - eavesdropping can be detected. Polarization also enables quantum entanglement, where measuring one photon's polarization instantly determines its entangled partner's state, even at a distance.

 

While powerful, polarization methods face practical challenges as polarization states can degrade during transmission through optical fibers or atmosphere, requiring sophisticated error correction methods. For these reasons, quantum communications can use several alternatives to polarization for encoding quantum information. Time-bin encoding uses photon arrival times and works well in fiber optics where polarization degrades. Phase encoding utilizes phase differences between photon paths, while frequency encoding uses different photon frequencies. Orbital Angular Momentum (OAM) encoding exploits spiral patterns of light waves, potentially carrying more information than polarization. Path encoding, which uses different physical routes for photons, is useful in integrated photonic circuits. Each of these methods has its own advantages and the choice often depends on the specific application and transmission medium being used. For instance, time-bin encoding tends to be more robust for long-distance fiber communication, while OAM can potentially carry more information per photon. 


Thursday, November 21, 2024

Quantum Communications – Part 1

 Computers, communications, photonics, cybersecurity…… some of my favorite technologies all bundled together in quantum communications! But… what is it? How does it work? Let's take an introductory look.

In quantum mechanics, something called superposition allows systems to exist in multiple states simultaneously - like a spinning coin being both heads and tails at once, until observed. Only measurement forces it into a definite state. This principle affects quantum information through the no-cloning theorem, which states that it's impossible to create an exact copy of an unknown quantum state due to quantum mechanics' mathematical foundations. This feature enables quantum key distribution (QKD), which creates unbreakable encryption keys. Any eavesdropping attempt disturbs the quantum states due to the no-cloning theorem, instantly revealing the intrusion. While classical information can be copied perfectly, quantum information's resistance to copying both protects it and makes quantum teleportation the only way to transfer quantum states.

 

How about an example? Let’s now compare sending a classical letter and sending a quantum letter using two diagrams I’ve created. These diagrams split into two parallel workflows showing classical versus quantum communication highlight the key security advantages of quantum communication over classical methods.


 




The classical letter path shows a letter that can be intercepted, read, and copied without detection as it moves from sender to recipient through the postal system.


The quantum letter path illustrates how quantum letters behave differently:

  • The letter exists in superposition (blue state) until measured
  • Any attempt to read/copy disturbs the quantum state (changes to red)
  • This disturbance is detectable when received by the recipient, revealing tampering

We’ll dig a little deeper in future posts – for now think of quantum communication as the first step toward a quantum internet - one that operates on the powerful principles of quantum physics rather than classical physics. While we may not see quantum email on our phones anytime soon, the technology is steadily advancing from science fiction toward practical reality.

Thursday, November 14, 2024

Time Traveling Technology

Back then I was always in the PC camp; Apple had their market, but the price point kept me away and the PC was more about business.


Scrolling through vintage tech photos online, I feel a pang of regret for not documenting my own journey. A 1974 CP/M terminal catches my eye - those phosphor-green screens where we typed cryptic commands, unwittingly shaping the digital future. Back then, RS232 serial ports were our lifeline machine to machine, carefully configuring stop bits and parity. Direct connections between computers required null modem adapters or cables with crossover wiring - TX to RX, RTS to CTS, the careful dance of handshaking signals.


Before the internet as we know it, there was TYMNET - that pioneering packet-switched network connecting terminals across the country. The hiss and static of dial-up modems negotiating connections to local terminals providing access to remote systems through X.25 protocols. The world seemed smaller as we connected across continents through packet-switched networks, each X.25 virtual circuit opening new possibilities.


The memories flow: DOS in the '80s, watching that C:\ prompt blink as we crafted batch and config.sys files and navigated directory structures. Serial connections ruled - null modem cables letting machines talk, COM ports needed constant coaxing. Remember XMODEM and KERMIT file transfers? Hours spent watching progress bars crawl across the screen, praying the connection wouldn't drop. My first local area network ran on ARCnet, with its characteristic coax cables and T-connectors linked by 93-ohm terminators. Troubleshooting always started with "Wiggle the coax!" - somehow, that gentle twist of BNC connectors often restored life to the network.


Ethernet brought its own challenges - thick yellow "frozen garden hose" cables threading through office ceilings. Installing vampire taps demanded precision: clamp them just right,  the perfect depth to contact the core. One mistake meant cutting, splicing, and starting over. But a successful connection brought pure joy.

 

And let’s not forget Token Ring, IBM's answer to networking. Those distinctive MAUs enabling token passing, ensuring orderly network access. Type 1 cable with its hefty copper shielding snake through the walls, each connection requiring perfect crimping of those specialized connectors. The satisfaction of seeing all stations "actively monitor present" on the ring - when it worked, it was bulletproof but so expensive.


OS/2 was a brief chapter - true multitasking, the Workplace Shell, and an object-oriented interface years ahead of its time. Though the market passed it by, tech enthusiasts still remember its innovation.


Windows evolved rapidly: 3.1, then Windows for Workgroups 3.11 that ran on top of DOS and revolutionized business and industry computing. Finally, sharing files and printers became accessible. Configuring peer-to-peer networks and IRQ settings was complex but rewarding - each successful file transfer felt like a small miracle.


1995 brought Windows 95, and I captured that excitement in my book "Windows 95 for Engineers." Features we take for granted - the Start button, taskbar, plug-and-play - seemed revolutionary then.


Looking at my modern setup, these milestones feel surprisingly close. Fifty years of technology have flowed past like silicon sand, each innovation building on its predecessors, each memory marking my path through the digital age.


I wonder what that CP/M dude would think of today's world. Would they see their work's legacy in our systems? Technology time moves strangely - crawling in anticipation, yet lightning-fast in memory.

Friday, October 25, 2024

Testing A Fuse Using Your Cell Phone

 

Capacitive touch screens dominate modern mobile devices due to their precision and reliability. These screens operate on principles of electrical capacitance - the ability of a system to store an electrical charge. The screen comprises a layer of electrically conductive indium tin oxide (ITO) protected by insulating glass. This arrangement creates a uniform capacitive field across the display surface. When a conductive object, such as a human finger, contacts the screen, it alters the local capacitance by several picofarads. High-precision sensors detect and measure these minute electrical changes to determine the exact contact location.


If you don't have a meter handy - here’s a 12 second video demonstrating how to test a fuse with your phone. Notice one end of the fuse is in contact with my fingers while the opposite end makes contact with the phone screen.

 

By comparison, resistive touch screens, commonly not found on phones but found in industrial interfaces and ATMs, employ a pressure-based mechanism. This alternative technology sacrifices the responsiveness of capacitive systems for universal input compatibility. 



Thursday, October 24, 2024

Nice Note From A Former Student And A Laser Optics Technology Faculty Opportunity In Western Massachusetts

This morning, I woke up to the following email from a former student (name has been removed).

 

Subject: Class of 1987 STCC Laser Electro Optic graduate

 

My name is ABCD TUVWXYZ Many moons ago you were my advisor and one of my professors in the Laser Electro Optic Technology program at STCC. I've been reminiscing recently and you popped in my head. I wanted to drop a quick e-mail to say thank you, I'm happily retired after having a rewarding career as a field engineer for 33 years. I ended up installing and repairing dozens of devices that used lasers. One used a laser to look for leaks after open heart surgery. Another  used a spectrometer in a blood analyzer.

Once again, thank you.

 

Pretty cool! It's remarkable how certain students stay with us - I can picture this one as clearly as if they were in my classroom just months ago. These lasting connections make me reflect on what draws people to this profession:

  • The joy of witness - There's nothing quite like seeing that moment when understanding dawns in a student's eyes or hearing years later about their successes.
  • Passion shared is passion multiplied - Great educators often fall in love with theor discipline twice - first with their subject, then with the art of sharing it.
  • The cycle of inspiration - Many of us teach because we remember those who lit the spark in us, and we yearn to pass that flame forward.
  • The privilege of mentorship - Building relationships with students and guiding their growth creates bonds that often last a lifetime.
  • Legacy through learning - By helping shape curious, capable minds, educators help build the foundation for society's future.

And….. Springfield Technical Community College is seeking a full-time professor to lead that same Laser Optics Technology (Photonics) program. This role offers the opportunity to shape curriculum, mentor tomorrow's professionals, and advance the field of photonics, technology and engineering education. Ready to transform your expertise into academic excellence and guide the next generation of technologists, scientists and engineers? Here’s a link to the position posting.

Monday, October 7, 2024

Gabby And Chalkey Got Married On Saturday

Gabby and Chalkey got married on Saturday. Another whirlwind Friday –> Sunday of memories, celebration, and emotions. Our second round after Eva and Jesse’s wedding a couple years ago. The last few weeks have been a whirlwind, but they've also sparked memories of the path that brought us here. As I look back, I'm reminded of how much we have to be thankful for. Here’s my father of the bride speech.


What a beautiful day it was! I got a bit emotional at times and of course went off script, which made my speech a little less polished than I'd hoped, but that just shows how much it all means to me. I haven't seen the video yet - maybe I'm saving that for never! The best part? Our family has grown, and I couldn't be happier about it. 


Chalkey, you're such a wonderful addition to our clan. Welcome!!

Friday, August 23, 2024

I'm Retiring From My Full Time Engineering Faculty Position at Holyoke Community College


“Often when you think you’re at the end of something, you’re at the beginning of something
else.” – Fred Rogers


After an enriching and fulfilling career spanning five decades, I am announcing my retirement from my full-time engineering faculty position at Holyoke Community College (HCC) effective August 30, 2024. This decision comes with mixed emotions, as I reflect on the journey that has shaped not only my professional life but also my personal growth.


Teaching has been more than just a job; it has been a vocation that allowed me to inspire and nurture countless students, guiding them through the complexities of engineering principles and practices. My time in academia has been marked by moments of profound satisfaction, seeing students evolve into competent and confident engineers and technologists, ready to make their mark in the world. Each graduation ceremony, each successful project, and each breakthrough in understanding (and of course each belly-flop failure) has reinforced my belief in the power of education.


The field of engineering itself has undergone tremendous transformation during my tenure. From the early days of teaching with chalk and blackboards to leveraging cutting-edge technology and online platforms, I have witnessed and embraced these changes, ensuring that my students received the most current and relevant knowledge. The shift towards digital learning, in particular, has been a remarkable journey, one that demanded continuous adaptation and learning on my part.


Retirement from HCC marks the beginning of a new chapter, where I am eager to channel my energy and expertise into some exciting consultancy projects, writing, mentoring, and of course some part-time teaching. The flexibility will allow me to spend more time with my family and yeah (!) - get in a little more fishing. 


Will this be a “sabbatical”  or a permanent change? Having experienced "retirement" in the past and not having it “stick”, I've learned to appreciate the unpredictability of life. This journey has taught me to embrace uncertainty and always stay open to whatever opportunities and possibilities the future may bring.


My academic career has been a tapestry woven with dedication, passion, and countless rewarding experiences. I carry with me a wealth of memories and the profound satisfaction of having contributed to the field of engineering and to the lives of so many young minds. 

Friday, June 21, 2024

An Exponential Leap: The Emergence of AGI - Machines That Can Think

Tech companies are in a rush. They're trying to lock in as much electricity as they can for the next few years. They're also buying up all the computer components they can find. What's all this for? They're building machines that can think and referring to the tech as Artificial General Intelligence, or AGI.

On June 3 Ex-OpenAI researcher (yeah he was fired) Leopold Aschenbrenner published a 162 page interesting document titled SITUATIONAL AWARENESS The Decade Ahead. In his paper Aschenbrenner describes AGI as not just another incremental tech advance – he views it as a paradigm shift that's rapidly approaching an inflection point.


I’ve read the whole thing - here's my short list of highlights by topic.


Compute Infrastructure Scaling: We've moved beyond petaflop systems. The dialogue has shifted from $10 billion compute clusters to $100 billion, and now to trillion-dollar infrastructures. This exponential growth in computational power is not just impressive—it's necessary for the next phase of AI development.


AGI Timeline Acceleration: Current projections suggest AGI capabilities surpassing human-level cognition in specific domains by 2025-2026. By the decade's end, we're looking at potential superintelligence—systems that outperform humans across all cognitive tasks.


Resource Allocation and Energy Demands: There's an unprecedented scramble for resources. Companies are securing long-term power contracts and procuring voltage transformers at an alarming rate. We're anticipating a surge in American electricity production by tens of percentage points to meet the demand of hundreds of millions of GPUs.


Geopolitical Implications: The race for AGI supremacy has clear national security implications. We're potentially looking at a technological cold war, primarily between the US and China, with AGI as the new nuclear equivalent.


Algorithmic Advancements: While the mainstream still grapples with language models "predicting the next token," the reality is far more complex. We're seeing advancements in multi-modal models, reinforcement learning, and neural architecture search that are pushing us closer to AGI.


Situational Awareness Gap: There's a critical disparity between public perception and the reality known to those at the forefront of AGI development. This information asymmetry could lead to significant societal and economic disruptions if not addressed.


Some Technical Challenges Ahead:

- Scaling laws for compute, data, and model size

- Achieving robust multi-task learning and zero-shot generalization

- Solving the alignment problem to ensure AGI systems remain beneficial

- Developing safe exploration methods for AGI systems

- Creating scalable oversight mechanisms for increasingly capable AI

An over reaction by Aschenbrenner?  Some think so. Regardless - this stuff is not going away and as an educator and technologist, I feel a responsibility to not only teach the tech but also have students consider the ethical and societal implications of this kind of work. The future isn't just coming—it's accelerating towards us at an unprecedented rate. Are we prepared for the AI  technical, ethical, and societal challenges that lie ahead?

Wednesday, June 19, 2024

How Is Battery Percentage Measured On My Device?

I get this question often - how is battery percentage measured and calculated by devices like our
phones, leaf blowers, electric cars, etc?  

It turns out most modern Battery Management Systems (BMS) use a combination of four variables to estimate the remaining charge in a battery.

 

1.    Voltage Measurement: Used to provide quick and direct State Of Charge (SOC) estimates  but can be inaccurate due to load variations. There are two measurements typically  considered:

  • Open-Circuit Voltage (OCV): This measures the voltage when the battery is not under load. Each battery type has a characteristic voltage curve that relates voltage to SOC.
  • Under-Load Voltage (ULV): This measures the voltage while the battery is under load. Compensation is required to account for the voltage drop due to internal resistance. 

2.    Coulomb/Charge Counting:  Precise over short periods but can drift over time due to measurement inaccuracies.

  • Coulomb/Charge Counting involves tracking the current flowing in and out of the battery. By integrating the current over time, you can estimate the total charge added or removed. This method needs a known initial state of charge to be accurate.      

3.    Impedance Tracking: Provides additional data to refine SOC estimates but requires complex algorithms and computations.

  • Impedance Tracking uses the battery's internal impedance (reciprocal resistance) which changes with the state of charge. By measuring the impedance, the state of charge can be estimated.

4.    Temperature Compensation: Battery performance and voltage readings can be significantly affected by temperature. 

  • Temperature sensors are used to adjust the SOC calculations.

Battery Capacity


Battery capacity C for a new battery is a given and specified by the battery manufacturer in ampere-hours (Ah) or milliampere-hours (mAh) units, depending on the size of the battery. As an example, the iPhone 15 Pro is equipped with a single battery rated at 3274mAh.  If you are wondering about your Tesla or Prius - batteries are wired in parallel – for example a 2020 Long Range Tesla Model 3 battery pack has 46 cells in parallel with each cell rated at 5 Ah. So that Tesla battery pack has about 46x5 Ah = 230 Ah capacity. Over time, battery capacity will decrease.

 

Some Variables


Let’s look at a couple of simple calculations used by our devices to calculate battery charge/percentage. Before we look at the formulas, let’s identify some variables used in the calculations.

 

Initial Calibration:

  • Battery starts fully charged (100% SOC).
  • OCV is measured to establish a reference point.

Discharge Phase:

  • Voltage is continuously monitored.
  • Coulomb counting tracks the charge removed.
  • Impedance is checked periodically to refine the SOC estimate.
  • Temperature compensation adjusts the readings. 

State of Charge Calculation:

  • Combining the voltage, coulomb count, and impedance data, the BMS computes the SOC.
  • This value is then translated into a percentage to display the remaining battery life. 

Finally - A Couple Formulas


There are two formulas commonly used - the first uses current (Coulomb Counting) and the second voltage (Voltage-Based SOC Estimation)

 

Formula for Coulomb Counting Estimation:



Formula for Voltage-Based SOC Estimation:



Battery percentage calculations rely on sensor measurements that account for the various factors affecting battery performance. Using real time sensor data, BMS algorithms continue to advance, providing estimates of remaining battery charge.